# Focal Length of Lenses #### OBJECTIVES - ☐ Investigate the properties of converging and diverging lenses. - Determine the focal length of converging lenses both by a real image of a distant object and by finite object and image distances. - Determine the focal length of a diverging lens by using it in combination with a converging lens to form a real image. #### EQUIPMENT LIST - Optical bench, holders for lenses, a screen to form images, meter stick, tape - Lamp with object on face (illuminated object), three lenses ( $f \approx +20, +10, -30 \text{ cm}$ ) #### THEORY When a beam of light rays parallel to the central axis of a lens is incident upon a **converging lens**, the rays are brought together at a point called the **focal point** of the lens. The distance from the center of the lens to the focal point is called f the **focal length** of the lens, and it is a positive quantity for a converging lens. When a parallel beam of light rays is incident upon a **diverging lens** the rays diverge as they leave the lens; however, if the paths of the outgoing rays are traced backward, the rays appear to have emerged from a point called the focal point of the lens. The distance from the center of the lens to the focal point is called the focal length f of the lens, and it is a negative quantity for a diverging lens. In Figure 41-1 two common types of lenses are pictured. In general, a lens is converging or diverging depending upon the curvature of its surfaces. In Figure 41-1 the radii of curvature of the surfaces of the two lenses are denoted as $R_1$ and $R_2$ . The relationship that determines the focal length f in terms of the radii of curvature and the index of refraction n of the glass of the lens is called the lens **makers equation**. It is $$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$ (Eq. 1) For the converging lens shown in Figure 41-1(a) the radius $R_1$ is positive and the radius $R_2$ is negative, but for the diverging lens of part (b), the radius $R_1$ is negative and the radius $R_2$ is positive. The signs of these radii are determined according to a sign convention that is described in all elementary textbooks. **Figure 41-1** Ray diagram for converging and diverging lenses showing the definition of the focal length for both the converging case and the diverging case. As an example, consider a double convex lens like the one shown in part Figure 41-1(a) made from glass of index of refraction 1.60 with radii of curvature $R_1$ and $R_2$ of magnitude 20.0 and 30.0 cm, respectively. According to the sign convention given above, that would mean $R_1 = +20.0$ cm and $R_2 = -30.0$ cm. Putting those values into Equation 1 gives a value for the focal length f of +20.0 cm. Essentially, Equation 1 indicates that a lens that is thicker in the middle than at the edges is converging, and a lens that is thinner in the middle than at the edges is diverging. A lens can be classified as converging or diverging merely by taking it between one's fingers to see if it is thicker at the center of the lens than it is at the edge of the lens. Lenses are used to form images of objects. There are two possible kinds of images. The first type, called a **real image**, is one that can be focused on a screen. For a real image, light actually passes through the points at which the image is formed. The second type of image is called a **virtual image**; light does not actually pass through the points at which the image is formed, and the image cannot be focused on a screen. Diverging lenses can form only virtual images, but converging lenses can form either real images or virtual images. If an object is farther from a converging lens than its focal length, a real image is formed. If the object is closer to a converging lens than the focal length, the image formed is a virtual one. Whenever a virtual image is formed, ultimately it will serve as the object for some other lens system to form a real image. Often the other lens system is the human eye, and the real image is formed on the retina of the eye. In the process of image formation, the distance from an object to the lens is called the **object distance** p, and the distance of the image from the lens is called the **image distance** q. The relationship between the object distance p, the image distance q, and the focal length of the lens f is $$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$ (Eq. 2) Equation 2 is valid both for converging (positive f) and for diverging (negative f) lenses. Normally the object distance is considered positive. In that case a positive value for the image distance means that the image is on the opposite side of the lens from the object, and the image is real. A negative value for the image distance means that the image is on the same side of the lens as the object, and that the image is virtual. If a lens is used to form an image of a very distant object, then the object distance p is very large. For that case, the term 1/p in Equation 2 is negligible compared to the other terms 1/q and 1/f in that equation. For the case of a very distant object, Equation (2) becomes Figure 41-2 Optical bench with object, lens, and screen on which a real image is formed. $$\frac{1}{q} = \frac{1}{f} \tag{Eq. 3}$$ For this case, the image distance is equal to the focal length. This provides a quick and accurate way to determine the focal length of a converging lens, but it is only applicable to a converging lens because the image must be focused on a screen. A diverging lens cannot form a real image, and this technique will not work directly for a diverging lens. If two lenses with focal lengths of $f_1$ and $f_2$ are placed in contact, the combination of the two in contact acts as a single lens of effective focal length $f_e$ . The effective focal length of the two lenses in contact $f_e$ is related to the individual focal lengths of the lenses $f_1$ and $f_2$ by $$\frac{1}{f_e} = \frac{1}{f_1} + \frac{1}{f_2} \tag{Eq. 4}$$ Equation 4 is valid for any combination of converging and diverging lenses. If the individual lenses $f_1$ and $f_2$ are converging, then the effective focal length $f_e$ will also be converging. If one of the lenses is converging and the other is diverging, then the effective focal length can be either converging or diverging depending upon the values of $f_1$ and $f_2$ . If the converging lens has a smaller magnitude than the diverging lens, then the effective focal length will be converging. We can use this fact to determine the focal length of an unknown diverging lens if it is used in combination with a converging lens with a focal length short enough to produce a converging combination. #### EXPERIMENTAL PROCEDURE # Focal Length of a Single Lens - 1. Place one of the three lenses in a lens holder on the optical bench and place the screen in its holder on the optical bench. Place the optical bench in front of a window in the laboratory and point the bench toward some distant object. Adjust the distance from the lens to the screen until a sharp, real image of the distant object is formed on the screen. You will be able to form such an image for only two of the three lenses. This experimental arrangement satisfies the conditions of Equation 3. The measured image distance is equal to the focal length of the lens. Record these measured image distances in Data Table 1 as the focal length of the two lenses for which the method works. Call the lens with the longest focal length A, the one with the shortest focal length B, and the one for which no image can be formed C. - **2.** Place lens B in the lens holder on the optical bench and use the lamp with the object painted on its face as an object. For various distances *p* of the object from the lens, move the screen until a sharp real image is formed on the screen. For each value of *p* measure the image distance *q* from the screen to the lens. Make sure that the lens, the object, and the screen are at the center of their respective holders. Try values for p of 20, 30, 40, and 50 cm, determining the value of q for each case. If these values of p do not work for your lens, try other values until you find four values that differ by at least 5 cm. Record the values for p and q in Data Table 2. # Focal Length of Lenses in Combination - **1.** Place lens A and lens B in contact using masking tape to hold the edges of the two lenses parallel. Measure the focal length of the combination $f_{AB}$ both by the very distant object method and by the finite object method. For the finite object method, just use one value of the object distance p and determine the image distance q. Record the results for both methods in Data and Calculations Table 3. - **2.** Place lens B and lens C in contact, using masking tape to hold the edges of the two lenses parallel. Repeat the measurements described in Step 1 above for these lenses in combination. Record the results in Data and Calculations Table 4. #### CALCULATIONS #### Focal Length of a Single Lens - **1.** Using Equation 2, calculate the values of the focal length *f* for each of the four pairs of objects and image distances *p* and *q*. Record them in Calculations Table 2. - **2.** Calculate the mean $\bar{f}$ and the standard error $\alpha_f$ for the four values for the focal length f and record them in Calculations Table 2. - **3.** The mean $\bar{f}$ represents the measurement of the focal length of lens B using finite object distances. Compute the percentage difference between $\bar{f}$ and the value determined using essentially infinite object distance in Data Table 1. Record the percentage difference between the two measurements in Calculations Table 2. ### Focal Length of Lenses in Combination - **1.** From the data for lenses A and B, calculate the value of $f_{AB}$ from the values of p and q. Record that value of $f_{AB}$ in Calculations Table 3. Also record in that table the value of $f_{AB}$ determined by the very distant object method. - **2.** Calculate the average of the two values for $f_{AB}$ determined above. This average value of $f_{AB}$ is the experimental value for the combination of these two lenses. - **3.** Using Equation 4, calculate a theoretical value expected for the combination of lenses A and B. Use the values determined in Data Table 1 by the distant object method for the values of $f_A$ and $f_B$ in the calculation. Record this value as $(f_{AB})_{\text{theo}}$ in Data and Calculations Table 3. - **4.** Calculate the percentage difference between the experimental value and the theoretical value for $f_{AB}$ . Record it in Data and Calculations Table 3. - **5.** From the data for lenses B and C, calculate the value of $f_{BC}$ from the values of p and q. Record that value of $f_{BC}$ in Data and Calculations Table 4. Also record in that table the value of $f_{BC}$ determined by the very distant object method. - **6.** Calculate the average of the two values for $f_{BC}$ determined above. This average value is the experimental value for the combination of these two lenses. - 7. Using the average value of $f_{BC}$ determined in Step 6 and the value of $f_B$ from Data Table 1 for the focal length of B, calculate the value of $f_C$ , the focal length of lens C using Equation 4. Record the value of $f_C$ in Data and Calculations Table 4. Date # LABORATORY 41 Focal Length of Lenses # PRE-LABORATORY ASSIGNMENT - 1. Mark the following statements about lenses as true or false. - a. Incident parallel light rays converge if the lens's focal length is negative. - \_\_\_\_b. If the path of converging light rays is traced backward, the rays appear to come from a point called the focal point. - \_\_\_\_c. A double convex lens has a negative focal length. - \_\_\_d. The focal length of a lens is always positive. - **2.** A double convex lens is made from glass with an index of refraction of n = 1.50. The *magnitudes* of its radii of curvature $R_1$ and $R_2$ are 10.0 cm and 15.0 cm, respectively. What is the focal length of the lens? Show your work. $$f =$$ \_\_\_\_\_ cm 3. What is a real image? What is a virtual image? **4.** For a diverging lens, state what kinds of images can be formed and the conditions under which those images can be formed. | 5. | For a converging lens, state what kinds of images can be formed and the conditions under which those images can be formed. | |----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6. | A lens has a focal length of $f = +10.0 \mathrm{cm}$ . If an object is placed 30.0 cm from the lens, where is the image formed? Is the image real or virtual? Show your work. | | 7. | An object is 16.0 cm from a lens. A real image is formed 24.0 cm from the lens. What is the focal length of the lens? Show your work. | | 8. | One lens has a focal length of $+15.0\mathrm{cm}$ . A second lens of focal length $+20.0\mathrm{cm}$ is placed in contact with the first lens. What is the equivalent focal length of the combination of lenses? Show your work | | 9. | Two lenses are in contact. One of the lenses has a focal length of $+10.0\mathrm{cm}$ when used alone. When the two are in combination, an object $20.0\mathrm{cm}$ away from the lenses forms a real image $40.0\mathrm{cm}$ away from the lenses. What is the focal length of the second lens? Show your work. | | lame | Section | Date | |---------------|---------|------| | ab Partners | <br> | | | a la anticolo | | | | | | | # LABORATORY 41 Focal Length of Lenses # LABORATORY REPORT ### Data Table 1 | Lens | Image Distance (cm) | Focal Length (cm) | |------|---------------------|-------------------| | A | | $f_A =$ | | В | | $f_B =$ | #### Data Table 2 #### Calculations Table 2 | p (cm) | q (cm) | |--------|--------| | | | | | | | | | | | | | $f_B$ (cm) | $\bar{f}_B$ (cm) | $\alpha_f$ (cm) | % Diff | |------------|------------------|-----------------|--------| | | | | | | | | | | | | | | | | | | | | # Data and Calculations Table 3 (Lenses A & B) | $q (p = \infty)$ | р | q | $f_{AB} p = \infty$ | $f_{AB} p \& q$ | $ar{f}_{AB}$ | $f_{AB}$ theo | % Diff | |------------------|---|---|---------------------|-----------------|--------------|---------------|--------| | | | | į | | | | | #### Data and Calculations Table 4 (Lenses B & C) | $q (p = \infty)$ | р | 9 | $f_{BC} p = \infty$ | f <sub>BC</sub> p & q | $ar{f}_{BC}$ | fc | |------------------|---|---|---------------------|-----------------------|--------------|----| | | | | | | | | # SAMPLE CALCULATIONS - **1.** $f = \frac{pq}{p+q} =$ - **2.** $\bar{f}_{AB} = (f_{AB^1} + f_{AB^2})/2 =$ - 3. $(f_{AB})_{\text{theo}} = (f_A) (f_B)/(f_A + f_B) =$ - **4.** $f_C = (f_B)(f_{BC})/(f_B f_{BC}) =$ # QUESTIONS - 1. Why is it not possible to form a real image with lens C alone? - 2. Take lens C between your thumb and index finger. Is it thinner or thicker at the center of the lens than at the edge? Take lens B between your thumb and index finger. Is it thinner or thicker at the center of the lens than at the edge? From this information alone, what can you conclude about lenses C and B? - **3.** Consider the percentage difference between the two measurements of the focal length of lens B. Express $\alpha_f$ as a percentage of $\bar{f}$ . Is the percentage difference between the two measurements less than the percentage standard error? - **4.** Compare the agreement between the experimental and theoretical values of $f_{AB}$ the focal length of lenses A and B combined. Do these data suggest that Equation 4 is a valid model for the equivalent focal length of two lenses in contact? - 5. If lens A and lens C were used in contact, could they produce a real image? State clearly the basis for your answer. You will need to do a calculation.