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Laboratory 20
Simple Harmonic Motion—Mass on a Spring

PRELABORATORY ASSIGNMENT

Read carefully the entire description of the laboratory and answer the following
questions based on the material contained in the reading assignment. Turn in the
completed prelaboratory assignment at the beginning of the laboratory period prior
to the performance of the laboratory.

1. Describe in words and give an equation for the kind of force that produces simple
harmonic motion.

2. Other than the type of force that produces it, what characterizes simple harmonic
motion?

3. A spring has a spring constant £ = 8.75 N/m. If the spring is displaced 0.150 m
from its equilibrium position, what is the force that the spring exerts?

4. A spring of constant 2 = 11.75 N/m is hung vertically. A 0.500-kg mass is sus-
pended from the spring. What is the displacement of the end of the spring due to
the weight of the 0.500-kg mass?
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5. A spring with a mass on the end of it hangs in equilibrium a distance of 0.4200 m
above the floor. The mass is pulled down a distance 0.0600 m below the original
position, released, and allowed to oscillate. How high above the floor is the mass
at the highest point in its oscillation?

6. A massless spring has a spring constant of 2 = 7.85 N/m. A mass m = 0.425 kg
is placed on the spring, and it is allowed to oscillate. What is the period T of
oscillation?

7. Assume everything is the same as in question 6 except that the spring has a mass
mg = 0.200 kg. What is the period T of the system?

8. A massless spring of £ = 6.45 N/m has a mass m = 0.300 kg on the end of the
spring. The mass is pulled down 0.0500 m and released. What is the period T of
the oscillation? What is the period 7 if the mass is pulled down 0.1000 m and
released?
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Laboratory 20
Simple Harmonic Motion—Mass on a Spring

OBJECTIVES

Simple harmonic motion is oscillatory motion that can be described by a single
sine or cosine function. An object undergoes simple harmonic motion when it is
subject to a force proportional to its displacement from an equilibrium position.
In equation form F = —kx describes such a force. A mass on the end of a spring
is subject to a force that can be expressed by the above equation. In this labo-
ratory, measurements of the motion of a mass on the end of a spring will be used
to accomplish the following objectives:
1. Direct determination of the spring constant % of a spring by measur-
ing the elongation of the spring for specific applied forces
2. Indirect determination of the spring constant £ from measurements of
the variation of the period T of oscillation for different values of mass
on the end of the spring
3. Comparison of the two values of the spring constant £
4. Demonstration that the period 7 of oscillation of a mass on a spring is
independent of the amplitude of the motion

EQUIPMENT LIST

L Spring and masking tape

2., Table clamps, right angle clamps, and rods

3. Laboratory balance and calibrated hooked masses
4. Laboratory timer

5. Meter stick

THEORY

An object that experiences a restoring force proportional to its displacement from an
equilibrium position is said to obey Hooke’s law. In equation form this relationship
can be expressed as

F = —kx a)

where & is a constant whose dimensions are N/m. The minus sign indicates that the
force is in the opposite direction of the displacement. If a spring is the object exert-
ing such a force, the constant % is called the “spring constant.”

An object subject to a force described by equation 1 will undergo a type of oscilla-
tory motion that is called “simple harmonic motion.” The name comes from the fact
that such motion can be described by a single sine or cosine function of time. If the
object is displaced from its equilibrium position by some value A and then released,
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the object will oscillate back and forth about the equilibrium position. The values of
its displacement x from the equilibrium position will range betweenx = A andx = —A.
The quantity A is called the “amplitude of the motion.” For the initial conditions
described above, the displacement x as a function of time ¢ is given by

2rt
x = A cos ( T ) (2)
where T is the period of the motion. The period 7 is equal to the time for one com-
plete oscillation from the maximum displacement on one side of equilibrium (+A), to
the maximum displacement on the other side of equilibrium (—A), and back to the
original position (+A).

Consider a mass m placed on the end of a spring hanging vertically as shown in
Figure 20.1. The original equilibrium position of the lower end of the spring is shown
in Figure 20.1(a), and the position of the lower end of the spring when the mass is
applied is shown in Figure 20.1(b). For purposes of determining the oscillatory
motion, the position shown in Figure 20.1(b) can be considered as the new equilib-
rium position, and displacements can be measured from that point. In Figure 20.1(c)
the mass is shown pulled down to a displacement A from this equilibrium position.
When released, the mass will oscillate with amplitude A.
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Figure 20.1 New equilibrium position with mass m placed on a spring.

The period of oscillation of the spring is independent of the amplitude A. It
depends only on the spring constant £ and the mass m. The period T is given by

T =21 \/»’é} 3

Equation 3 is strictly true only if the spring is massless. For real springs with finite
mass, a portion of the spring mass must be included along with the mass m. If the
mass per unit length of the spring is constant, it can be shown that one third of the
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spring mass mg must be included in equation 3 along with m. This gives as the equa-
tion for a spring of finite mass m,

EXPERIMENTAL PROCEDURE—SPRING CONSTANT

1. Attach the table clamp to the edge of the laboratory table and screw a threaded
rod into the clamp vertically as shown in Figure 20.2. Place a right-angle clamp
on the vertical rod and extend a horizontal rod from the right-angle clamp. Hang
the spring on the horizontal rod and attach it to the horizontal red with a piece
of tape. Screw a threaded vertical rod into a support stand that rests on the floor.
Place a right-angle clamp on the vertical rod and place a meter stick in the clamp
so that the meter stick stands vertically. Adjust the height of the clamp on the
vertical rod until the zero mark of the meter stick is aligned with the bottom of
the hanging spring as shown in Figure 20.2.
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Figure 20.2 Arrangement to measure displacement of spring caused by mass m.

2. Place a hooked mass m of 0.1000 kg on the end of the spring. Slowly lower the
mass m until it hangs at rest in equilibrium when released. Carefully read the
position of the lower end of the spring on the meter-stick scale. Record the value
of the mass m and the value of the displacement x in Data Table 1.

3. Repeat step 2, placing in succession 0.2000, 0.3000, 0.4000, and 0.5000 kg on the
spring and measuring the displacement x of the spring. Record all values of m
and x in Data Table 1.
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CALCULATIONS—SPRING CONSTANT

1. Calculate the force mg for each mass and record the values in Calculations Table

1. Use the value of 9.800 m/s? for g. (It makes sense here to assume another sig-
nificant figure in g in order not to be limited by that quantity for this data. Note
that this is not the correct value to this number of significant figures but it makes
no difference for cur purposes.)

Perform a linear least squares fit to the data with mg as the ordinate and x as the
abscissa. Calculate the slope of the fif and record it in Calculations Table 1 as the
spring constant k.

. Calculate the correlation coefficient for the linear least squares fit and record it

in Calculations Table 1.

EXPERIMENTAL PROCEDURE—AMPLITUDE VARIATION

L

The dependence of the period T on the amplitude A will be done for a fixed mass.
Place a hooked mass m of 0.2000 kg on the end of the spring. Slowly lower the
mass until it hangs at rest when released. Note this position of the lower end of
the spring.

. Displace the mass downward 0.0200 m (i.e., so that x — xp= A = 0.0200 m as

shown in Figure 20.1), release the mass, and let it oscillate. Measure the time for
10 complete periods and record it in Data Table 2 as Af. Repeat the procedure two
more times, for a total of three trials at this amplitude ( A = 0.0200 m).

Repeat step 2 above for values of A equal to 0.0400, 0.0600, 0.0800, and 0.1000 m.
Make three trials for each amplitude and measure the time for 10 periods for each
trial. Record all results in Data Table 2.

CALCULATIONS—AMPLITUDE VARIATION

1 Calculate the mean At and standard error ¢, for the three trials for each ampli-

2.

tude. Record the results in Calculations Table 2.
Caleulate the period 7 from 7' = Az /10. Record the results in Calculations Table 2.

EXPERIMENTAL PROCEDURE-—MASS VARIATION

L. The data just taken for the period as a function of amplitude should have shown

that the period is independent of the amplitude. Therefore, the dependence of the
period 7 on the mass m can be done for any amplitude. Place a hooked mass of
0.0500 kg on the spring and let it hang at rest. Displace the mass slightly below
the equilibrium, release it, and let the system oscillate. Measure the time for 10
periods of the motion and record that time in Data Table 3 as Az. Repeat the pro-
cedure two more times, for a total of three trials with this mass.

Repeat the procedure of step 1 for values of the mass m equal to 0.1000, 0.2000,
0.3000, 0.4000, and 0.5000 kg. Perform three trials of the time for 10 periods for
each mass and record the results in Data Table 3.

Using a laboratory balance, determine the mass of the spring m and record it in
Data Table 3.
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CALCULATIONS—MASS VARIATION

1. Calculate the mean At and standard error ¢, for the three trials for each mass.
Record the results in Calculations Table 3.

2. Calculate the period T from T = Az /10. Record the results in Calculations Table 3.

3. Calculate the quantity Vm + (my/3) for each of the values of m. Record the results
in Calculations Table 3.

4. According to equation 4, the period T should be proportional to Vm + (m/3)with
2m/Vk with T as the ordinate and Vm + (m//3) as the abscissa. Determine the
slope of this fit and equate it to 2#/Vk, treating % as unknown. Solve the result-
ing equation for 2 and record it in Calculations Table 3. Also record the value of
the correlation coefficient of the least squares fit in Calculations Table 3.

B, Calculate the percentage difference between the value of 2 determined indirectly
by this procedure and the value of £ determined earlier by measuring the elon-
gation per unit force.

GRAPHS

1. Graph the data from Calculations Table 1 for force mg versus displacement x with
mg as the ordinate and x as the abscissa. Also show on the graph the straight line
obtained from the linear least squares fit to the data.

2. Graph the data from Calculations Table 2 for the period T versus the mass m with
T as the ordinate and m as the abscissa.

3. Graph the data from Calculations Table 3 for the period 7' versus Vm + (my/3)with
T as the ordinate and Vm + (my/3) as the abscissa. Also show on the graph the
straight line obtained from the linear least squares fit to the data.
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Hame Section Date

Laboratory 20
Simple Harmonic Motion—Mass on a Spring

LABORATORY REPORT

Data Table 1 Calculations Table 1
m (kg) x (m) mg (N) k (N/m)
Corr. Coeff. =
Data Table 2 Calculations Table 2
A (m) Aty (8) | Aty (s) | Atg(s) At (s) a, (s) T (s)

SAMPLE CALCULATIONS
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Data Table 3

m (kg)

Atl (S)

At2 (S)

At3 (S)

kg

Calculations Table 3

m (kg At (s) & (8) T (s) Vm + (m/3) (Vkg)
Slope = Corr. Coeff. =
= N/m % Diff =

SAMPLE CALCULATIONS
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QUESTIONS

. L Do the data for the displacement of the spring x versus the applied force mg indi-
cate that the spring constant is indeed constant for this range of forces? State
clearly the evidence for your answer, including the significance of the correlation
coefficient according to the table in Appendix I for the linear least squares fit to
the data in Data Table 1.

2. State clearly how the period 7 is expected to depend on the amplitude A. Do your
data confirm this expectation?

3. There are two ways to judge the agreement of the data for the dependence of the
period T on the mass m. One is the correlation coefficient for the fit of 7 versus
the quantity Vm + (my/3), and the other is the agreement of the value of % deter-
mined by the fit with the value of 2 determined directly. State as quantitatively
as possible how well your data show the expected dependence of the period 7" on
the mass m.
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4. Instead of considering the spring mass m, as known, treat it as unknewn. Take
the value of & determined from the elongation per force in Data Table 1 as the
known value of 2. Using the measured value of the period 7"when m = 0.5000 kg
in equation 4 calculate a value for the spring mass m,. Do this same calculation
for the period measured when m = 0.0500 kg. Compare each of these values of m,
with the known value of the spring mass.

5. Generally neither of the results of question 4 will be very good, but the smaller
mass will usually give the best agreement with the known spring mass. Suggest
why this is not a very good measure of the spring mass and why the smaller mass
is expected to be the best value.

6. The measurements of the period T were done by measuring the time for 10 peri-
ods. Why is the time for more than one period measured? If there is an advantage
to measuring for 10 periods, why not measure for 1000 periods? Other than the
fact that it would take too long, is there a valid reason why measuring for 1000
periods is not a good idea?
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